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This paper suggests a dual to the many-person applied welfare economics problem with 
constraints on lump-sum redistribution. The dual has the property of minimizing an aggregator 
function over individual income transfers. The properties of the aggregator are dependent upon 
the resource costs of redistribution and not upon the distributional preferences embodied in the 
social welfare function. An interpretation of the dual problem in terms of consumer surplus is 
offered. 

1. Introduction 

Practitioners of applied welfare economics often use unweighted sums of 
individual consumer surplus changes to evaluate public policy. This is 
generally seen as an efficiency-oriented technique that does not attempt to 
reflect judgements about the equity effects of policy. It is widely recognized, 
of course, that distributional issues cannot be avoided in many policy 
contexts (e.g. in tax policy evaluation), and in these cases the usual procedure 
is to employ weighted sums of individual surplus changes. 

In this paper we present a different view on aggregating individual 
surpluses. Beginning with the primal problem of finding a policy that 
maximizes some Bergson-Samuelson social welfare function (SWF) defined 

over individual utilities, subject to relevant constraints, we define a dual 
problem that provides a many-person generalization of the Diamond- 
McFadden (1974) loss-minimization approach to the optimal tax-applied 
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welfare economics problem. Then we show that the minimization of a many- 
person loss function is equivalent to the maximization of a ‘consumer surplus 

aggregator’. We are able to establish the duality between our primal and 
dual problems without any aggregation-type restrictions on preferences (e.g. 
homotheticity or zero income effects). This permits us to conclude, for 
example, that any solution to a second-best social welfare maximization 
problem can also be characterized as a solution to a loss minimization or 
aggregate surplus problem, and conversely. 

More specifically, we formulate welfare maximization problems in which 

the welfare optimizer not only controls tax rates (and the other usual 
instruments, such as public production), but can also determine a (positive or 
negative) lump-sum transfer to each household, subject to the constraint that 
a non-decreasing function defined over individual transfers, called a redis- 
tributive cost function, be non-positive.’ The form of this function reflects the 
‘technology’ or costliness of the transfer mechanism. For example, in the 
important special case where redistribution is costless, the redistributive cost 
function is a simple unweighted sum of the payments to all households: the 
constraint that this sum be non-positive then indicates that one more dollar’s 
worth of resources taken from one household permits one more dollar’s 
worth of transfers to be paid out to some other household(s). Alternatively, 
redistribution may be costly in the sense that only a portion of a dollar 
taken from one household eventually finds its way into the hands of a 
recipient. This could occur, perhaps, because of the administrative cost of the 

redistribution. If money (strictly real resources) taken from a rich household 
is put into a leaky bucket which will (irretrievably) lose some of its contents 

by the time it arrives at the poor family’s doorstep, or if there is some 
wasteful melting of the ice cream in the camel caravan that redistributes from 

rich to poor oases in the desert, then the redistributive cost function will 
assume a form, perhaps a weighted sum of transfers or some more general 
non-linear form, that reflects these costs.’ In the extreme, we arrive at 
another important polar case, where redistribution is infinitely costly. This 
reduces essentially to the standard optimal tax problem, in which no 
redistribution occurs. Here, the redistribution constraint requires that the 
maximum transfer paid to any household be non-positive, i.e. no amount of 
resources given up by other households would make it possible to transfer a 
dollar to any one household. 

‘More generally, the constraint is that the redistributive cost function be less than or equal to 
some prescribed value not necessarily zero. 

20n leaky buckets, see Okun (1975). The caravan example is due to Harberger (1978). It 
should be noted that in their examples, leakage or melting is meant to reflect the efficiency losses 
due to the redistribution-induced distortion of incentives, as well as any pure resource costs 
resulting from the transfer mechanism per se. Our analysis treats distortions explicitly and 
separately, however, so the redistributive cost function must be interpreted more strictly than 
Okun and Harberger interpret their metaphors. 
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The redistributive cost function is of critical importance because it 

becomes the objective function in our loss-minimization dual problem, and it 
determines the form of the corresponding consumer surplus aggregator or 
social surplus function (SSF) in the equivalent social surplus maximization 
problem. The form of the aggregation of individual surpluses, in other words, 
naturally reflects not the distributional preferences embodied in the SWF of 
the primal problem, but the ‘technology’ of lump-sum redistribution em- 
bodied in the redistributive transfer constraint. This does not imply that 
distributional preferences, as captured in a SWF, are irrelevant in the 
formulation of dual surplus maximization problems. Rather, the distri- 
butional preferences of the SWF show up in a consrraint on the dual 
problem. This constraint specifies the individual reference utility levels, and 
thus the reference compensated demand curves, with respect to which the 
individual consumer surpluses are measured. 

The remainder of the paper is organized as follows: section 2 presents the 
general applied welfare economics problem to be considered; section 3 

provides a dual characterization of this problem and a formal equivalence 
result. Section 4 provides a ‘consumer surplus’ interpretation of the results. 
In section 5, we summarize our conclusions. Much of the technical argument 

is relegated to an appendix. 

2. The general welfare maximization problem 

In order to present the analysis and results in the simplest possible 
context, we restrict attention to a quite simple and familiar policy problem, 
namely the determination of an optimal structure of commodity taxes. It is 
quite straightforward to extend the results to deal with other issues, such as 
the determination of optimal public expenditures and public production. The 
analysis also extends directly to the determination of the restricted optimal 
tax structure, with, for example, some untaxed commodities. 

Let W be a Bergson-Samuelson SWF, defined over individual utilities, 
non-decreasing in each argument and strictly increasing in at least one. The 
standard optimal tax problem of Diamond and Mirrlees (1971) can be 

written3 

‘The notation is standard. There are H households, h= 1,. ., H, each with utility function 
uh(x,J defined over the net consumption vector x,,. (Factors supplied are negative net 
consumption.) The normalized vector of consumer prices is q, the expenditure function 
(denominated in numeraire) is e,(q, u,,), and the compensated demand function is x,(q, u,J. X(q, u) = 
Chxh(q, ah), where u =(ur,. , IA,,). m=(m,, , mH) is a vector of lump-sum incomes (measured in 
numeraire). e=(er, , e,,). Private production is organized competitively, either with constant 
returns technology or 100 percent profits taxes, so no profits accrue to households. (The results 
extend to less than 100 percent profits taxes, however.) G is the net-of-government-consumption 
set, representing feasible net private consumption possibilities. 
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(PI max W(u) 
(s,u) 

s.t. 

X(y, U) E G, e,(q, u,,) = 0, all h. 

The second constraint in (P) implies that lump-sum tranfers are ruled out. 

Alternatively, the second constraint in (P) could be replaced by 

(1) 

allowing for the possibility of lump-sum interpersonal redistribution. 
It is implicit in constraint (1) that a unit of numeraire taken from 

household h permits a transfer of one more unit to household h’. In this 
sense, (1) characterizes costless redistribution. It is imaginable, however, that 
a unit of numeraire ‘shrinks’ en route to household h’, as in the leaky bucket 
example given earlier. Then not all points in m-space satisfying (1) will be 
attainable in the absence of some supply of numeraire, exogenous to the 
redistributive program, to absorb the transfer costs. As fig. 1 illustrates, the 
line R” shows the frontier of points satisfying (l), attainable via costless 

R’:max (mh)’ 0 i 
h 

: 

Fig. 1. Redistribution cost functions. 
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redistribution. When redistribution is costly, the point m=O is still attainable, 

but any redistribution forces one below R”, as illustrated for example by the 
frontier R’. 

Algebraically, any redistributive constraint can be represented by a func- 
tion R(m) which is constrained to be non-positive, and is non-decreasing in 
each argument and strictly increasing in at least one. We call R(m) a 
redistributiue cost function. R(m) is interpreted as the amount of the numer- 
aire good that must be exogenously supplied to achieve the redistributive 
program m. R(0,) =0 always. The special case of infinitely costly redistri- 
bution, depicted by R* in fig. 1, is represented mathematically as 

R(m)=max{m,}~O. 
<h) 

In general, then, we can write the welfare maximization problem with 
possibly costly redistribution as (P) with the second constraint replaced by 

R[e(q,u)] SO, or, with ? an exogenously fixed scalar, by R[e(q,u)] ZF. 
Obviously this encompasses (1) (2), and all intermediate cases as we11.4 

3. The dual many-person expenditure (loss) minimization problem 

Diamond and McFadden (1974) have stressed the usefulness of the loss- 

minimization approach to optimal taxation. For example, it permits a very 
simple derivation of the Ramsey characterization of the optimal tax 
structure. It also facilitates a consumer surplus interpretation of the optimal 

tax structure and of the deadweight loss from taxation. A natural question is 
whether this can generalize to the many-person context. Actually, examples 
of such generalizations already exist in the literature. Helpman (1978) for 
example, evaluates tariff policy in terms of an unweighted sum of individual 
expenditure functions. Is this approach consistent with some primal welfare 
objective, however? For example, is a policy which minimizes this unweighted 
sum actually feasible, and is it Pareto eff’cient?5 If not, on what basis are 
we to justify interest in this policy? Moreoever, one might wonder about the 
equity implications of the unweighted sum approach. How should it be 
modified to accommodate differing equity viewpoints? 

In this section, we address these issues. We begin by observing that a 
natural dual to problem (P), obtained by an interchange of objective and 

%, if non-zero, can be interpreted as a supply of numeraire (manna), from a source external to 
the economy (heaven), that increases the amount of resources that can be distributed to 
households via the determination of the vector m. F, if negative, represents an exogenously fixed 
claim on the economy’s resources that constrains the determination of lump-sum incomes m. r is 
included purely as a formal device. In most situations of interest r will equal zero. 

‘Actually, these questions arise in the single-person case as well. Our results include the 
single-person economy as a special case. 



294 R. Harris and D. Wildasin, Aggregate surplus analysis 

constraint functions, is: 

PI min Ne(q, 41 
(4,u) 

s.t. 

X(q, u) E G and W(u) 2 W. 

First, we note that (D) is in fact a many-person generalization of the 
Diamond-McFadden problem. In their approach, one chooses consumer 
prices q to minimize a single consumer’s expenditure function e(q,ti) subject 

to a feasibility constraint x(q,ti) E G, where the utility level U is exogenously 
fixed. The single-consumer version of (D) is precisely identical to this, except 
that u is added as a choice variable, subject to the constraint that u 2 U. This 
latter constraint will bind at a solution (under weak assumptions), so that 
(D) really is equivalent to the Diamond-McFadden problem for single 
consumers. 

In the general many-consumer case, (D) involves minimizing the resource 
cost of a redistributive program m=e(q, u), subject to technological and 
government budget constraints, and subject to meeting an exogenously 

specified level of welfare. With many consumers, the constraint u2U natur- 
ally generalizes to W(u)zW, which requires that the outcome in utility space 

at a solution to (D) must lie on or above a contour of the SWF. In fact, 
because the functions R and W play a role in (D) quite analogous to e and u 
in the single-consumer case, one could think of R as a ‘social expenditure 

function’. 
To establish a formal relationship between (P)” and (D), we require that 

the SWF W, the redistributive cost function R, and the underlying pre- 
ferences and technology be well behaved. In addition, we require that 
constraint qualification conditions be satisfied for both (P) and (D). These 
assumptions are spelled out in the appendix. There we also state more 
formally and prove the following key results: 

Theorem I. If (q*,u*) is a solution to (P), then (q*,u*) is a solution to (D), 
for W = W(u*). At this solution, R[e(q*, u*)] = F. 

Theorem 2. If (Lj,u”) is a solution to (D), then (4,;) is a solution to (P) for 
J= R(e(@,C)]. At this solution, W(6) = W. 

These results have the following implications. First, we observe that if 
(q*,u*) solves (P) with, say, r=O, and if we set the parameter W in (D) equal 

6(P) in this section is understood to incorporate the general constraint R[e(q, u)] 5 F. 
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to W(u*), then any solution to (D) also solves (P). The circularity of this 

argument obviously presents a problem for actually solving (P) via the dual, 
but nonetheless it establishes the fact that there exists a parametric speciti- 
cation for the dual which solves any primal, and the dual cannot therefore be 
dismissed as ad hoc or contradictory to the principle of welfare maximi- 
zation. This conclusion is quite adequate for some purposes. For example, as 
Diamond and McFadden emphasize, it is quite simple to derive the Ramsey 
optimal tax formula or the other necessary conditions for optimal policy 
from (D). The fact that this formula characterizes a true utility-maximizing 
policy only if W is the utility level at the optimum, while problematic for a 
policymaker trying to find the optimum, is not a weakness arising from the 

choice of the dual approach: Precisely the same problem besets the analyst 
beginning with the primal. This weakness is inherent in the Ramsey formula 

itself, which requires information about the compensated demand curves 
obtaining at a second-best optimum. 

Second, the dual approach does offer at least some information about 

whether a given policy is welfare maximizing: the solution (4,;) of the dual is 
a solution to the primal (P) with ?=O if and only if R[e(&u”)] =O. One could 
imagine using this fact to grope one’s way to a solution to (P), by increasing 
M! whenever R ~0 at a solution to (D) and conversely if R >O. Whether this 

would be computationally efficient would of course depend on the relative 
ease of solving (D) compared to (P). 

What is most striking about theorems 1 and 2 is their implications for the 

problem of equity. Note that the form of the objective function in (D) is 

determined not by the equity judgments embodied in the SWF IV, but rather 
the aggregate loss measure of the dual corresponds to the redistributive cost 
function of the primal. If costless lump-sum transfers are feasible, then R is a 
simple unweighted sum irrespective of equity concerns. In the other natural 
polar case, where no redistribution is feasible, the dual ob.jective is to 
minimize the maximum expenditure function. A weighted sum may emerge 
when redistributive costs are neither zero nor infinite. In any case, the form 

R reflects the redistributive technology. Equity concerns are nonetheless 
central to the dual approach. They appear, however, in the welfare constraint 
W(u)ZW which restricts the set of feasible utility levels, rather than in the 
objective function. 

Baldly stated, our conclusion that the duality between welfare maximization 

and loss minimization requires that the individual expenditure functions be 
evaluated at utility levels satisfying the welfare constraint in (D) is not really 
surprising. If U* is the vector of utilities at a solution to (P) and no is some 
other arbitrary vector, one could hardly expect to characterize the policy 

leading to U* in terms, say, of compensated demand elasticities evaluated at 
u = u” - the demand functions of consumers might, after all, be quite different 
at u’. In the literature, however, relatively little attention is devoted to the 
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determination of the ‘reference’ utility levels, while equity judgments are 
supposed to be reflected in the form of the loss function R. See, for example, 
Tresch (1981, pp. 85-87, 35&353) for a clear statement of the usual approach 
and the reasons why duality results such as those given above do not obtain 

in this case. 
Finally, let us note that the dual problem (D) suggests a natural dead- 

weight loss interpretation. Imagine solving (D) for a given welfare level W and 
instrument set. This yields a value of the redistribution function R= R’. A 
restriction on the set of instruments or feasible set G, but with the sume 
welfare level W, would give a new and higher optimal value for R= R”. The 
difference R/‘-R’ might be called the ‘deadweight loss’ implicit in the 
restriction of instruments - for example, fixed taxes or tariffs. The loss can 
be interpreted as the amount of exogenous numeraire income that would be 
required to be injected into the economy, upon introducing the restrictions 
on the instrument set, in order to maintain the initial level of social welfare. 
It is similar in some respects to the Debreu (1951) coefficient of resource 
utilization in that resources are hypothetically injected or withdrawn from 
the economy. In this case, however, social welfare is held constant and 

redistribution is not assumed to be costless. 

4. Equivalence of welfare and surplus maximization 

We now reformulate the loss-minimization framework of (D) in terms of 
surplus maximization. We begin by defining a measure of individual 
consumer’s surplus change associated with a change in consumer prices, and 
then discuss the aggregation of these individual changes for overall policy 

evaluation. 
First, for household h we define an individual surplus showing the change 

in consumer’s surplus between an initial reference price vector 4’ and a 
comparison price q according to 

h(q, q”, uJ =eh(qO, UJJ --e&, 4. (3) 

This individual surplus will be recognized as the Hicks compensating 
variation for a price change from q” to q with money income constant. It is 
important to note that this surplus change measure depends not only on the 
price vectors to be compared, but on the utility level uh at which the 
expenditure function is evaluated. sh is the negative of the sum (across 
commodities) of the areas to the left of the compensated demand curves 
between the initial and comparison prices. 

Next, we define a class of functions over translates of the individual 
surplus functions. Specifically, a social surplus function (SSF) is a function 
S: R’,+R defined over the vector s(q,q’, u)-e(q”, u), weakly increasing in 
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each argument. Note that the translation of the s(q, q”, U) vector by e(q’, u) 

depends on the reference prices q” and on the utility level u. 

By (3), s(q, q”, u) - e(q”, u) = - e(q, a). Thus, given a redistributive cost func- 
tion R: Iwv-+[w, we may define the associated SSF S(s[q,q’,u] -e[q’,u])= 

- R( - s[q, q”, u] + e[q’, u]), and conclude immediately that choosing (4, U) 
subject to constraints to minimize R(e[q,u]) is equivalent to maximizing 
S(s[q,q’, u] -e[q’, u]) if S is the SSF associated with R. Similarly, given an 

SSFS; [wH-+[w,, we may define the associated redistributive cost function 

R(e[q, u]) = -S( -e[q, u]), and conclude that maximizing S is equivalent to 
minimizing the associated R. By theorems 1 and 2, therefore, we also have: 

Corollary 1. If(q*, u*) solve (P), then (q*, u*) solves 

6) mm S(sC4, q”, ~1 - eCq”, ~1) 
<q.u> 

s.t. 

X(q, u) E G and W(u) 2 W. 

Corollary 2. Let (&ii) solve (S). Let R be the redistributive cost function 

associated with S, and define Y= R(e[q”,fi])=S(s[q,qO, ii]). Then (q,u”) solve (P) 
relative to R, if 

Corollary 1 asserts that if the reference utility levels are chosen ‘correctly’, the 
vector q will be welfare optimal if it maximizes an appropriate SSF. Note 
that with q” and u fixed, an SSF can be interpreted simply as a weakly 
increasing function of the individual surplus functions. It is thus appropriate 

to refer to (S) as a problem of ‘social surplus maximization’. By corollary 2, a 
social surplus maximizing policy is also social welfare maximizing, given the 

associated redistributive cost function and net increment to social resources, 
r. 

By corollaries 1 and 2, there is an intimate interrelationship between social 
welfare and social surplus maximization, just as theorems 1 and 2 have 
demonstrated for welfare maximization and aggregate loss minimization. In 
fact, much of the interpretive discussion of section 3 carries over directly 

here, and we need not repeat it. Let us simply summarize some of the main 
implications. First, every solution to a welfare maximization problem can be 
equivalently described as a solution to a dual surplus maximization problem. 
Thus, corollary 1 can be used to characterize a solution to (P) in an 
interesting way. For instance, a solution to an optimal tax problem, given 
that costless redistribution is possible, must maximize the unweighted sum of 
individual surpluses, a result that is perhaps more readily interpretable, 
though actually equivalent to, the famous Ramsey equi-proportionate reduc- 
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tion in demand characterization. Indeed, we can use corollary 1 to provide a 
check on the (constrained) Pareto efficiency of any existing policy. Suppose 
(q”,uo) is some initial equilibrium. If q” does not solve (S), with q” itself 
taken as the reference price vector and U=u” - that is, if it is possible to 
increase the SSF with alternative prices, measuring individual surpluses 

relative to compensated demand curves corresponding to existing equilibrium 
utility levels - then the existing policy is not welfare maximizing for any 
SWF, and it must therefore be (constrained) Pareto inefficient. 

Second, by corollary 2 there does exist a specification of a surplus 
maximization approach to policy evaluation that can result in Pareto 
efficient outcomes, and that is equitable in the sense of selecting any Pareto- 
efficient outcome that one might desire. Thus, without imposing any 
aggregation-type restrictions on preferences, we see that well-defined ag- 

gregate surplus functions can be constructed and used as objective functions 
in maximization procedures to yield efficient, unbiased policies. 

Third, it is at the same time clear that not all surplus-maximization 
exercises that one might consider will have the above properties. For 
example, if utility levels are specified in some arbitrary fashion, maximization 

of aggregate surplus defined in terms of the associated arbitrary compensated 
demand curves will generally result in policies that are either infeasible, 
inefficient, or inequitable. 

Moreover, the SSFs in our dual problem (S) reflect the constraints on the 
possibility for redistribution, not ethical judgments. To see this clearly, 
consider the two polar special cases where distribution is either costless or 

completely infeasible, In the first case, R(e[q,u]) =x,e,(q,u,,), and the as- 
sociated SSF is xR(sh[q, q”, u,,] -e,[q’, uh]). Corollary 1 shows that maximi- 
zation of an unweighted sum of individual surplus is equivalent to maximi- 

zation of social welfare in this case, regardless of the form of the SWF. The 
result that an unweighted sum of individual surpluses is to be maximized 
when costless lump-sum distribution is feasible is rather intuitive. 

The second case perhaps more surprising. When distribution is not 

feasible, R(e[q,u])=max (e,(q,u)j, so that to maximize the associated SSF as 
in problem (S) is to max(,,.,min(,, {s,(q, q”, uk) -e(q’, u,)]. That is, the 
objective is to maximize the minimum of the (translated) individual surplus 
functions. The SSF assumes the maximin form with this redistributive 
‘technology’ regardless of the underlying SWF. 

5. Conclusion 

We have shown here that social surplus functions can be constructed and 
used in maximization problems that are precisely equivalent to the usual 
social welfare maximization exercises. Fundamentally, therefore, neither is 
superior to, or more operational than, the other. Of course, in any 
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application one method may be more convenient than another, so it is useful 

to know that either may be used. 
We would emphasize, however, that our version of the surplus maximi- 

zation problem differs from the ‘distributional weights’ approach often found 
in the literature. The conventional interpretation of weighted consumer 
surplus is that it approximates an indirect social welfare function, as for 
example in Feldstein (1972). On the other hand, Blackorby and Donaldson 
(1982) have demonstrated that for weighted consumer surplus to be a 
globally exact indirect social welfare function requires quite restrictive 
assumptions on individual preferences and the form of the SWF. The 

aggregation of consumer surplus proposed in this paper stems from a quite 
different perspective of looking at the ‘dual’ to the conventional welfare 
economics problem. The aggregator reflects the potential, or lack of it, for 
pure lump-sum redistribution. The aggregator may vary from an unweighted 
sum to a maximin form. The marginal weight attached to person h is the 
marginal resource cost of transferring dollar to k.’ In this framework 
distributional concerns are met by an appropriate choice of reference utility 
levels, not by choosing individual welfare weights. 

Appendix 

To prove theorems 1 and 2, we impose the following assumptions: 

A.I. W(u): W is an individualistic Bergson-Samuelson SWF, continuous, 
non-decreasing and increasing for strong Pareto improvements, i.e. if u’$u, 

then W(d) > W(u), where u =(ul,. . . , u”) E RH. 

A.2. X(q,u): The compensated demand correspondence is jointly continuous 
in (q, u), derived from H utility maximizing consumers. 

A.3. G: The feasible second-best production set for aggregate compensated 

demand vectors is a non-empty, closed subset of R”. 

A.4. e”: The expenditure functions are jointly continuous in (q,uh), concave 
and linear homogeneous in q, and strictly increasing in nh. 

‘This does not however mean that a ‘weighted sum’ type of SSF is never appropriate. Such an 
SSF arises whenever the redistribution technology is of the appropriate form. For instance, 
suppose a two-person economy such that a one-unit transfer from household 1 to 2 results in 
one-half of a unit actually ‘arriving’ at 2, with half of the unit disappearing ‘in transit’. Then, for 
this two-person society, we would have R(e) =e, + 2e, (at least for e, note,), and the associated 

SW, given (@,u), would be S= Csl(~,qO,ul)--e,(qo,u,)--e,(qo,u,)l +2Cs,(q,q”,u,)--e,(qo,u,)l. Of 
course, this R also implies that a one-unit transfer from 2 results in two units received by 1, 
which is hardly imaginable; thus the above specification of R should be taken to refer to the 
range where 1 is making transfers to 2, which, we might suppose, is the ‘relevant range’ for the 
problem at hand. 



300 R. Harris and D. Wildasin, Aggregate surplus analysis 

A.5. R(e): The redistribution function R: RH-+R is continuous, non- 
decreasing in e and, if e’>>e, then R(e’) > R(e). 

Both (P) and (D) are second-best problems. In order for these to be ‘true’ 
second-best problems, a regularity condition, or ‘constraint qualification’, 

analogous to Diamond and Mirrlees’ (1971) ‘Pareto improving price changes’ 
condition, is required. 

Assumption 2.1. At any solution (4,U) to (P) or (D), if one exists, for some 
6 >O, and all E, 6 > E > 0, for any u such that 1 Iii-uI 1-c E, there exists a q such 
that X(q, u) E G. 

Assumption 2.2. At any solution (q,U) to (P) or (D), for all 6 sufficiently small 
there exists some u<<Ullu---U 11~6, such that X(q, U)E G. 

Remark 1. Assumption Z.l implies that if one were to relax the constraint 
R(e) SF in (P) at the second-best optimum, it would be possible to raise 
welfare, i.e. this constraint will be binding at any solution to (P). 

Remark 2. Assumption 2.2 is also important for similar reasons, although it 
could be weakened. Since R(e) is increasing in u if 2.2 did not hold it might 

be possible to have a solution to (D) in which the welfare constraint 
W(U) 2 W does not bind. 

Fig. 2 illustrates a failure of 2.2. Due to inferiority of one good the 
expansion path at second-best prices Lj actually cuts outside of G for lower 

utility. Thus, the duality of the two problems is destroyed unless W= W(U). 
The possibility in problem (D) that, at second-best prices, relaxation of the 
welfare constraint leads to an increase in the amount of redistribution 
required, is eliminated by 2.2. A sufficient condition which imples 2.2 is that 
all goods be normal, although this is actually stronger than necessary. 
Another sufficient condition is that an income transfer to every household at 
constant prices increase the total taxes paid by every household. 

We now formally restate and prove the two main theorems. 

Theorem 1. Given Z.l, ij’(q*,u*) is a solution to (P), then (q*,u*) is u solution 

to (D), for W = W(u*). At this solution, R[e(q*, u*)] = F. 

Proof Suppose to the contrary 3(q’,u’) which is a solution for (D) and 
R(e’) < R(e*). Consequently: 

(i) R(e’) < R(e*) = c 

(ii) X(q’, u’) E G; 
(iii) W(u’) 2 W(u*). 
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[Income expansion 
consumer demand at 

path of 
prices Cj] 

Fig. 2. Violation of 2.2. 

Given a u>>u’, but sufhciently close to u’, we can find a q close to q’ such 
that 

(iv) R(e) < R(e*) =? by continuity of R; 

(v) X(q, u) E G by assumption Z.l; 
(vi) W(U) > W(u’) 2 W(u*) by construction. 

Hence (q,u) is feasible for (P) and yields a solution value greater than W(u*). 
But this contradicts the assumption that (q*,u*) is a solution to (P). Q.E.D. 

Theorem 2. Given 2.2, if(Lj,C) is a solution to (D), then (q,il) is a solution to 

(P) for F= R(q = R(e[& u”]). 

Proof: Suppose to the contrary 3(q’,u’) which is a solution for (P) and 
W(u’) > W(c). Then 

(i) W(u’) > W(G) 2 W; 
(ii) X( q’, u’) E G; 

(iii) R(e’) 2 R(l?) = if 

By 2.2 choose a ti close to G<<u’, such that 

(iv) R[e(q’, ti)] < R(e’) 5 f by AS; 
(v) X(q’, 6) E G by 2.2; 
(vi) W(c)> W(c)z@ by continuity of Wand (i). 

Consequently (q’, ti) is feasible for (D) and yields a lower value for R(.), 
contradicting the assumption that (kj,fi) is a solution to (D). Q.E.D. 

J.P E.- B 
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Putting theorems 1 and 2 together, there is a symmetric relationship 

between the two problems if both Z.l and 2.2 hold. Note that if Z.l fails, it 
is still true that a solution to (D) will be a solution to (P), but not 
conversely. If 2.2 fails but not Z.l, a solution to (D) will be a solution to (P), 

but not conversely. 
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