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Using an expenditure minimization approach, necessary and sufficient conditions for local 
random taxation are obtained in terms of the curvature of the compensated demand function, so 
that intuition from excess burden analysis can be applied. Major findings include: (1) random 
taxation is locally optimal if the compensated demand function is sufficiently convex; (2) 
horizontally equitable taxation is locally optimal if the compensated demand function is 
concave, and (3) local randomization is not optimal if the tax revenue requirement is sufficiently 
close to zero or to any local maximum. We also derive an inverse elasticity characterization of 
the optimal random tax structure. 

1. Introduction 

In a recent paper, Stiglitz (1982a) presents an interesting challenge to 
traditional ideas in public finance by showing that horizontally equitable 
taxation of identical individuals may conflict with utilitariansim or ex ante 
utility maximization: The sum or expected value of utilities can sometimes 
increase by allowing the tax structure to differentiate among identical 
households. This is an important contribution because it poses a dilemma as 
to which of these criteria should be regarded as more fundamental when it 
becomes necessary to choose between them.’ 

Such an intriguing conclusion warrants ,careful examination. In this paper, 
our goal is to show the exact conditions under which randomization of the 
structure is optimal, and to help clarify the intuition underlying this result. 
More precisely, we present and interpret necessary and sufficient conditions 

*We are grateful to L. Chenault, J. Wilson, and two referees for helpful comments on an 
earlier version of this paper, but retain responsibility for errors. The first author was partially 
supported by an Indiana University’s Outstanding Young Faculty Award. 

‘See also Weiss (1976) Stiglitz (1982b) and Balcer and Sadka (1982) on random taxation. 
Those papers focus primarily on randomization of income taxes, whereas we are concerned, as is 
Stiglitz (1982a), with random commodity taxation. They also deal with informational asym- 
metries and screening problems which are absent from our analysis. All subsequent citations of 
Stiglitz’s work refer to Stiglitz (1982a). 
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for a small move toward a random tax structure, i.e. ‘local randomization’, to 

be desirable. Our general method is similar to that of Stiglitz, who derives 
sufficient conditions for local randomization and then argues that these 
conditions are met if various behavioral parameters take on certain values. 
We also provide an inverse elasticity characterization of the optimal tax 
structure, whether it involves ‘small’ or ‘large’ departures from uniform 
taxation. 

Unlike Stiglitz, we develop most of our analysis from an expenditure- 
minimizing (dual) rather than utility-maximizing (primal) perspective. We 

present this alternative approach for three reasons. First, it is analytically 
more convenient to deal with than the equivalent social welfare maximization 
problem. Second, it provides a rigorous and straightforward interpretation of 
random taxation in terms of consumer’s surplus or excess burden. This is 
most helpful in developing valid intuition for the problem. Third, as 
explained further below, it allows us to focus on efftciency aspects of the case 
for randomization independently of ethical judgments about the distribution 
of welfare, or, equivalently, independently of attitudes toward risk embodied 
in the cardinal properties of utility functions. In fact, all of our local 
randomization results are stated, directly or indirectly, in terms of properties 
of the compensated demand function evaluated at a giuen level of utility. 

To summarize the structure and results of the paper, section 2 states the 
expenditure minimization problem on which the subsequent analysis is based, 
and presents some preliminary results on the properties of its objective and 
constraint functions. Section 3 establishes a series of propositions about 
necessary and sufficient conditions for the optimality of small deviations from 
a uniform or non-random tax structure. The curvature properties of the 
compensated revenue function (i.e. the relationship showing the revenue 
obtained from a household as a function of the tax rate it faces) and the 
compensated demand curve for the taxed commodity (both evaluated at the 
level of utility obtained at the uniform tax equilibrium) are of critical 
importance. If the revenue function is convex, local randomization is desired. 
Moreover, if the demand curve is sufficiently convex, this condition will be 
met. As a partial converse, local randomization is not optimal if the 
compensated demand curve is concave. In the intermediate case, where the 
revenue function is concave and the demand function is convex, randomiza- 
tion may or may not be desirable. We show that there are two cases, 
however, where the revenue function is concave and local randomization is 
definitely not optimal: when the government’s revenue requirement is zero or 
sufficiently close to zero, so that the tax rate under uniform taxation is very 
small, and when the revenue requirement is sufficiently large, so that uniform 
taxation would require a tax rate close to one that (globally or locally) 
maximizes the revenue function. 

Since the results of section 3 are derived from an expenditure minimization 
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problem, they have a direct interpretation in terms of excess burden. In 

particular, these results rigorously verify an informal diagrammatic analysis 

of random taxation initially presented by Stiglitz. It is not surprising, of 
course, that our formal verification of that analysis runs in terms of 
properties of a compensated curve. Since utility is held constant along such a 
curve, it is also not surprising that cardinal properties of the utility function 
play no role in the excess burden argument. Note, however, that this implies 
in particular that the conditions for randomization derived from such an 
argument do not, and cannot, depend on the degree of risk aversion that 
consumers might have. 

In section 4, instead of evaluating small or local departures from uniform 
taxation, we use the expenditure minimization approach to characterize an 
optimal tax structure ~ which may involve uniform taxation, or small or 
large horizontal inequities. Notably, an inverse elasticity formula obtains at 
an optimum. Also notably, this inverse elasticity formula always holds at a 
uniform tax structure, even when uniform taxation is not actually optimal. 
This provides a specific example of a case where necessary conditions for 
optimal taxation can be satisfied by a non-optimal tax structure, and 
naturally leads to consideration of second-order conditions for optimal 
taxation. We show that satisfaction of the second-order conditions depends 
on curvature properties of the revenue function, and we relate this analysis to 
that of section 3. 

Section 5 compares and contrasts our analysis with that of Stiglitz. While 
the difference in approach (primal vs. dual) naturally results in some 
differences in results, we show that some of the differences are only apparent. 
Stiglitz argues that randomization of taxes may be optimal when the 
government’s revenue requirement is sufficiently high and the demand curve 
is sufficiently convex. This claim appears to conflict with our conclusion that 

randomization is non-optimal near maximum revenue. We show, however, 
that Stiglitz’s requirement that the demand curve be sufficiently convex in the 
neighborhood of a maximum revenue tax rate is self-contradictory, and that 
Stiglitz’s sufficient conditions for randomization therefore cannot be satisfied 
at a local (regular) maximum of tax revenue.* Indeed, Stiglitz’s formal 
analysis leads to conditions that imply that revenues are at a local (regular) 
minimum. Thus, the revenue function is convex, not concave, just as our 
excess burden analysis would indicate. 

Section 6 concludes with some further comparison of primal vs. dual 
approaches to the random taxation problem, and some suggestions for 
further research. 

*We say that a function f(x) achieves a regular maximum at x=x“ if f’(x”)=O and f”(xO) ~0. 
Similarly for a regular minimum. 
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2. The model 

For the purposes of our analysis, it is sufficient to examine a very simple 
two-household economy. Let there be a single consumption good and let 
labor be the sole factor of production. Taking labor as numeraire, let pi, 
i= A, B, be the consumer price faced by household i for the consumption 
good, the producer price of which is fixed at unity. Both consumers have 
identical preferences, as given by the common expenditure function e(p,u), 
where u is utility. Let C(p,u) denote the compensated demand function for 
the consumption good. Define the revenue function R(p, u) A (p - l)C(p, u), 
showing the amount of revenue collected from a household with utility u, 
facing the tax rate (p- 1). The government is assumed to have a fixed 
revenue requirement of R”. 

Equal treatment of equals, at least ex post, means p* =pB and U* =uB= U 
say. We therefore ask whether p* = pB solves3 

(D) min L(p*, pB, Is) g e(p*, ii) + e(pB, 12) 
(PA,PB) 

s.t. 

R(p*, ti) + R(pB, ii) 2 R”. (1) 

If p* # pB at a solution to (D), we say that the tax structure is horizontally 
inequitable. The basic objective of the analysis in this and the next section is 
to find conditions under which the tax structure is horizontally inequitable in 
this sense. 

The economic meaning of the problem (D) can be interpreted as follows. 
Let U be the maximum (common) utility level obtainable under undifferen- 
tiated horizontally equitable taxation, subject to the revenue constraint. It 
follows that a solution (pA,pB) to (D) has pA#pB if and only if, starting from 
an initial equal utility, equal price situation (p” = pB, tt* = uB = ti), it is possible 
to differentiate the tax structure, and to devise appropriate side payments or 
lump-sum transfers, such that either or both households can be made better 
off, with neither being made worse off [Harris and Wildasin (1985)]. That is, 
a solution to (D) with p*#p” implies that there exists a Pareto improvement 
over an equal utility, equal tax rate situation. This means of course, that 
horizontally equitable or non-random taxation cannot be utilitarian optimal, 
since a Pareto improvement must increase the sum of utilities. A much 
stronger statement can be made, however: if PA#pB at a solution to (D), 
horizontal equity is undesirable from the viewpoint of any individualistic 

3Diamond and McFadden (1974) develop the basic expenditure-minimization approach’ to 
optimal tax problems. Tresch (1981) provides an extensive treatment from this persepctive. 
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social welfare function, no matter how inequality-averse it may be - 
including the Rawlsian maximin social welfare function. Furthermore, the tax 
structure is horizontally inequitable - i.e. PA # pB - if and only if pA = pB does 
not maximize aggregate consumers’ surplus, or minimize excess burden, 
defined with reference to the (identical) compensated demand curves for each 
household evaluated at a common level of utility aA=aB= U [again, see 
Harris and Wildasin (1985)]. Thus, analysis of the problem of random 
taxation using an aggregate expenditure minimization perspective, as in (D), 
helps to focus attention on the efficiency implications of departures from 
uniform taxation.4 

We now develop conditions under which we can say whether or not 
horizontal equity is optimal from the expenditure-minimizing viewpoint of 
problem (D). Let i; in fig. 1 denote a level contour of L(pA,pB, ti), while R is 
the iso-revenue contour satisfying (1). Note the preference direction in price 
space indicated by the arrow: L decreases toward the origin. The slope of E 
is simply 

GA - CB( pB, ti) 
---Z 

dpB L CA(pA, ii) ’ 

while the slope of 17 is 

dpA _ CB(pB, ii) + (p” - l)CF(pB, 2) - R,bB, 4 

dpB R CA(pA, ts) +(pA - l)C;(pA, ii> = R,(pA, ii) ’ 
(3) 

where Cb = ac’/dp’<O is the own-price derivative of the compensated de- 
mand function, and where R&p, 17) = aR/dp. At pA = pB, the basic symmetry of 
our problem implies that both curves have slopes of - 1. Hence, for pA=pB 
to be globally optimal, it is necessary that R be more convex than E at 
pA = pB, as shown in fig. 1. This condition is also suffkient for pA = pB to be 
a local optimum. On the other hand, L more convex than R at pA=pB is 
sufficient for pA = pB not to be optimal (even locally). 

We must therefore determine the curvature of these contours. By (2) we 
have (suppressing arguments for notational ease) 

d2pA _-C;; CB d* 
d(pB)2 L cA (CA)’ 

CAP =_%_ 
'dpB t CA 

4Single-consumer models have often been used in optimal tax analysis to isolate ‘efticiency’ 
from ‘equity’ problems. As a referee observes, one justilication for considering such models is to 
assume that optimal lump-sum interpersonal redistribution is going on behind the scenes. [This 
is stated explicitly in Diamond and McFadden (1974, n. 6).] Many other studies have explicitly 
incorporated lump-sum interpersonal transfers in second-best models with heterogeneous 
consumers. Among them are Marchand (1968), Mohring (1970), Green (1975), Wildasin (1984) 
and, indeed, Boiteux (1971). 

J.P.E.- C 
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PB 

Fig. 1 

Thus, 

d2pA 

d(pB)’ L 
=-,+$>O, atn*=#‘, (4) 

where E =(p/C)C, is the compensated price elasticity of demand. Thus, L is 
necessarily convex around the 45” line. 

By (3), letting R,, = a2R/8p2, 

d2pA 
- = - R,,(P~, 6) 

d(p”)’ R 

+ R,(pBZ) 
R (PA r$&(~*, i)* 

R&P*, 6) p 3 dpB R’ 

Thus, 

d2pA pm(.) 2&(2+zv) 

d(pB)2 I? 
=- -=- 

&A.) p(1 +z&) ’ 
at p* = pB, (5) 

where z =(p- 1)/p is the proportional tax rate on consumption and where 
v = pC,,/C, is the curvature of the compensated demand curve. Since the sign 
of v is unrestricted a priori, R could be either convex or concave around the 
45” line. Note for future reference that v >O iff C,,<O iff the demand curve is 
concave to the origin. Hence, since R,,= C,(2 + zv), R,,>O implies v ~0, 
while v >O implies R,,<O. That is, a convex revenue function implies a 
convex demand curve, while a concave demand curve implies a concave 
revenue function. Note particularly that this does not rule out a convex 
demand curve and a concave revenue function. 
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3. Curvature conditions for random taxation 

In this section we characterize the desirability of randomization in terms of 
the curvature of the compensated demand curve, V, and relate it to the shape 
of the revenue function, R. We restrict attention to ‘efficient’ levels of 
taxation, i.e. we assume that R, = C( 1 + ZE) > 0. 

By (4) and (5), a sufficient condition for randomization is 

2E d2pA d2pA 

I I 

2R pp _ 242+rv) 
-P=d(pB)2L’d(pB)2R=-Rp-- p(1 +TE) ’ 

at pA = pB. (6) 

Eq. (6) can be simplilied to 

V<&- l/r. (6’) 

Except for the borderline case that v =E- l/r, we may take (6’) as a necessary 
and sufficient condition for local randomization. Expressed in terms of the 
compensated demand function, we have 

c c 1’ pP<-JP 
CP c p-l’ (7) 

Since we restrict taxation to ‘ehicient’ levels, i.e. R, = C+(p- l)C,>O, the 
above equation implies 

C 2c 
PC_‘, or V<2E. 

C&J c 

Notice, however, no compensated demand with constant elasticity, i.e. C = kp-“, 
k, c( > 0, satisfies (7). 

It is immediate from (6) that if R,,,>O, i.e. the revenue function is convex, 
then randomization is welfare improving. Notice that R,, >O if, and only if, 
v< -2/r, which implies a convex compensated demand function, C,,>O. 
In fact, if the demand curve is kinked and convex, we have v= -cc and 
R,,= co. This special case can easily be illustrated with an excess burden 
diagram, as in fig. 2(a). Suppose the required revenue can be obtained by 
taxing both households at a uniform rate b, implying a consumer price of b 
and a total excess burden of 2. abc. If the demand curve is kinked at 3, then 
the taxes on A and B can be randomized in such a way as to hold revenue 
constant and reduce total excess burden. For example, in fig. 2(a) we show 
an increase in pA, and a decrease of equal magnitude in pB, that reduces 
aggregate excess burden (because b’a’ab < baa”b”) or increases aggregate 
consumers’ surplus (because @pAa’a < jaa"pB) and actually increases tax 
revenues. Note, as illustrated in fig. 2(b), that the kink in the demand curve 
also implies a convex kink in the revenue function R, as shown at r=9. This 
suggests the desirability of randomization around a tax rate at which revenue 
is definitely not maximized, a point that will be further elaborated below. 
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producer 
price=1 

Fig. 2(a) 

9 7 

Fig. 2(b) 

To summarize, 

Proposition 1. Suppose that the revenue function R is convex at all points of 
ejkient uniform taxation, i.e. RPP> 0 and R,> 0. Then the optimal tax 
structure is random, i.e. pA#pB. 

Next, we observe from (6’) that randomization is not optimal, at least 
locally, if 

1 +r(v-&)>O. (9) 
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Clearly, (9) is valid for all v 2 0, i.e. it is not desirable to randomize locally for 
any concave (including linear) compensated demand function (C,,sO). 
Notice R,,<O in this case. This result also reaffirms the intuition from the 
excess burden argument. 

Proposition 2. If the compensated demand function is concave at a point of 
ejkient uniform taxation, i.e. C,,~O and R,> 0, then local randomization of 
the tax structure is undesirable.5 

Propositions 1 and 2 identify two cases where one can make clear-cut 
statements about the optimality of random taxation, based on convexity of R 
in one case and concavity of C in the other case. This leaves the interesting 
case in which we have a convex compensated demand function together with 
a concave revenue function, i.e. 

-2/r5v<O. (10) 

Combining with (6’) local randomization with a concave revenue function is 
optimal iff 

-2/T5V<&-11/T. (11) 

Hence we have: 

Proposition 3. Even if the revenue function is concave, the compensated 
demand curve may be sufficiently convex for randomization to be optimal. 

The question of randomization around a tax rate where R is concave is of 
particular interest because we can identify two situations where R definitely 
will be concave. The first occurs when z is ‘sufftciently large’, or, more 
precisely, when R is at or near a local or global maximum (if one exists). 
Here, R, NO and R,,<O, the right-hand side of (6) is large and positive, and 
hence local randomization cannot be optimal.6 The second case occurs when 

sit is worthwhile noting that (weak) concavity of demand functions is an ‘unusual’ property in 
the sense that not all ordinary demand functions can be (simultaneously) concave at any price 
vector. See Harris (1975) for the proof. The extension to the compensated case is immediate: 
let x’=x(q’, Is), for i= 1,2, be the compensated demand vector for consumer prices qi, x1= 
x(Aq’ + (1 - l)q’, E). Concavity of x (i.e. concavity of each component of x in q) means x1 2 Ix’ + 
(1-1)~‘. If preferences are strictly quasi-concave, u(x’) = u(x’) = ii implies u(x”) z U, a contradiction. 
. 6As discussed in detail in Harris and Wildasin (1985), solutions to (D) correspond to solutions 
of social welfare maximization problems under certain conditions. However, this correspondence 
can break down in some cases. In particular, a maximum of the compensated revenue function 
R need not, and generally will not, occur at the same tax rate that maximizes an uncompensated 
revenue function. If the income elasticity of C, n, is positive, then R,>O at a tax rate where the 
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r is ‘sufficiently small’, i.e. zero or close to zero. If r = 0, R,, = (C/p)s(2 + TV) = 

(C/p)2s ~0, so R is definitely concave. Moreover, (6) requires -2s> -4s when 
r=O, which is obviously impossible. Hence, randomization is undesirable in 
this case as well. 

To see these results in a different way, note that since R is concave near 
z =0 and at maximum revenue tax rates, we can apply (11) to check the 
optimality of randomization. When the tax is sufficiently high in the sense 
that it is near the maximal feasible tax revenue, i.e. r= - l/s approximately, 
the right-hand side of (11) becomes E- l/r= -2/r. Hence, the set of values 
for v allowing randomization is empty. Moreover, rewriting (11) as 

o< l/(&-v)<rS2/v, (11’) 

we see that the range of tax rates at which randomization is desirable is 
bounded away from zero, which implies that one should not randomize near 
a zero revenue point. Thus, we have shown 

Proposition 4. The revenue function is concave at T = 0 and around (global or 
local) maximum revenue tax rates. In neither case is local randomization of the 
tax structure desirable. 

Proposition 4 suggests that randomization is ‘most likely’ to be optimal for 
‘intermediate’ values of the revenue requirement, R”. To avoid misinterpreta- 
tion, however, note that for any R” >O, no matter how small, there exists a 
demand curve that is sufficiently convex that randomization would be 
optimal. To see this, simply suppose that the tax rate z pictured in fig. 2(a) is 
‘small’. No matter how small z is, it would be possible for a demand curve to 
have a convex kink, or for v to be very large (negative), so that (6’) would be 
satisfied. In other words, although R is concave at R” =O, this is strictly a 
local property, and cannot be guaranteed over any finite interval. Similarly, 
although R is concave around any revenue maximum, this too is a strictly 
local property. It would be possible for randomization to be optimal near a 
revenue maximum, so long as R” is not ‘too’ near such a maximum. Thus, 
although randomization can be shown to be non-optimal for sufficiently 
small and sufficiently large revenue requirements, these are only local 

uncompensated revenue function is maximized. (The converse holds when C is inferior.) Thus, a 
maximum of R might correspond to an inefficient uniform tax from the primal perspective, and 
the duality of the two approaches would break down. Readers may therefore prefer to interpret 
the results here on maximum tax revenue as pertaining to the special case where the income 
elasticity of C is zero: in this case, compensated and uncompensated functions coincide, and 
none of the above dithculties arises. As we shovv in section 5, the basic conclusion that 
randomization is undesirable near maximum feasible revenue can be directly verified in the 
primal case without imposing the zero income elasticity restriction. Thus, for the purposes at 
hand, qualifications about income effects are not really critical. 
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statements, and little more can be established, with generality, about revenue 
requirements and randomization. 

In summary, our analysis shows that convexity of the revenue function, 
R, which implies convexity of the demand curve, C, is sufficient but not 
necessary for randomization to be optimal. Concavity of C, which implies 
concavity of R, is sufficient but not necessary to rule out the desirability of 
local randomization. If R is concave, but C is convex, local randomization 
could be desirable. Under no circumstances, however, could local randomiza- 

tion be desirable when the tax rate is near zero or when the tax revenue 
requirement is sufficiently close to a local maximum. 

4. An inverse elasticity formula and second-order conditions for optimal tax 
structure7 

So far we have described conditions under which horizontally equitable 
taxation is locally non-optimal. What can we say about the tax structure that 
is optimal?* 

From Harris and Wildasin (1983, we know that if (pA,pB) describes a tax 
policy that maximizes some social welfare function W(U*,U~), given optimal 
lump-sum interpersonal redistribution, and if (UA,tiB) are utility levels ob- 
tained by each household at this optimum, then (pA,pB) solve 

min e(p*, U”) + e(pB, iiB) 
(PA.PB> 

s.t. 

R(p*, U”) + R(pB, U”) 2 R". (12) 

‘This section was prompted by the insightful remarks of a referee, to whom we are greatly 
indebted. 

*Our local analysis in section 3 can be extended to a large economy with an arbitrary number 
of individuals, n, divided into two groups of arbitrary size, say group A with (n-m) individuals 
and group B with m individuals. In that case, the loss function is (n-m)e*+mea, while the 
revenue constraint is (n-m)RA+mRBz R”. The only effect of this on our formal analysis is to 
change the curvature of both the iso-expenditure and iso-revenue curves by the same proportion, 
as is easily verified. This of course leaves the local analysis unaffected. However, a referee has 
constructed an argument that suggests that the analysis of globally optimal taxation can depend 
in an important way on the size of the economy. In particular, with a large number of 
households, it may be possible to devise optimal policies which involve very heavy taxation of a 
very small number (e.g. one) of consumers and minimal or no taxation of all of the others. This 
policy could be accompanied by very large lump sum transfers from the low-tax group to the 
high tax individual which could maintain (or actually increase) the welfare level of that 
individual. (In fact, this individual is able indirectly to impose the tax burden on other 
households and actually ends up better off than everyone else. One might think of this person as 
a tax farmer.) As noted above, this argument in no way affects our local analysis. Moreover, the 
two-person global analysis in this section applies directly to a large economy if we impose the 
restriction that the population is divided into two equal-size groups. The referee’s analysis 
indicates, however, that new results can be obtained in the large economy case with unequal 
group sizes, a possibility that deserves attention in future research. 
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This problem is identical to (D) except that we have substituted the optimal 
and possibly unequal values of U* and uB for the common utility level U. 

Forming a Lagrangian with multiplier ;1>0 for (12), the following neces- 
sary conditions characterizing (p*, pB) are easily derived: 

l-11 f’= ___ 7 
II El’ 

i=A,B, 

where 

Ei A a i0g cypi, 2) 

ahpi 

Hence, 

TA $3 

F=F 

(13) 

(14) 

In other words, 

Proposition 5. At an optimal tax structure, the tax rate faced by each 
household i is inversely proportional to the elasticity of the household’s 
compensated demand curve for the taxed commodity, evaluated at the optimal 
consumer price and utility level (pi, 2). 

As is well known, first-order necessary conditions do not necessarily 
uniquely determine an optimal tax structure.’ For example, the usual 
Ramsey formula for optimal taxation may also be satisfied by other, non- 
optimal tax structures. While this insufficiency of first-order conditions is 
widely noted in the literature, there is a dearth of examples of non-optimal 
tax structures satisfying the first-order conditions. 

Such an example is readily available in the present context, however. In 
particular, it is obvious (from the symmetry of our two consumers) that a 
horizontally equitable tax policy, with PA =PB and U* =ziB, must satisfy the 
inverse elasticity formula (14), whether or not horizontally equitable taxation 
is actually optimal. Put another way, the necessary inverse elasticity con- 
dition for optimal taxation is satisfied by the uniform tax structure, even if 
randomization of the tax structure is the optimal policy. 

‘For discussion of suflXient conditions for optimal taxation and other programming 
problems, see, for example, Harris (19754, Green (1975), Atkinson and Stiglitz (1980, pp. 374- 
375), and Chenault (1985). 
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This leads one to study the second-order conditions for an expenditure- 
minimizing tax policy. These conditions require that 

IDI= _& -A 

-A 
4; 

.._“,;r, 0 <o, (15) 

3; 0 l$pq, 

where superscripts identify the functions R(p’,ti’), e(p’,i?), i=A, B, and where 
overbars denote evaluation at (Do”, FE, GA, iiB).lo Of course, ~$,,a @e($, ~‘)/8(p’)‘, 
i = A, B. Computing the determinant, we have 

(16) 

At a horizontally equitable tax structure, i.e. with PA = pB and UA = UB, (16) 

becomes (dropping superscripts) 

IDI = - 2R;(e, - lRpp). (17) 

Note, however, that if R,, >O, the expression in parentheses is negative, and 
hence ID\ >O. From Proposition 1, of course, we know that R,, >O implies 
that local randomization is desirable, so the failure of the second-order 
condition in this case is not surprising. We can now say more, however: since 
the first-order conditions for an extremum are met under horizontally 
equitable taxation, convexity of R is actually a sufficient condition for a 
uniform tax structure to be locally expenditure maximizing. l1 

5. Comparison with the Stiglitz analysis 

As noted earlier, our expenditure minimization analysis of random tax- 
ation focuses on ‘efficiency’ aspects of the problem. By contrast, an analysis 
such as that of Stiglitz, which maximizes a social welfare function (in his 
case, a utilitarian one) and which disallows lump-sum transfers, in some 
sense mixes efficiency and equity considerations. It does so by judging a 
randomized tax structure to be preferred, if the gain in one household’s 

“‘See, for example, Henderson and Quandt (1980, p. 383). 
“Because of the symmetry of our problem, it is obvious that optimal random tax structures 

come in pairs: in one case, A faces a high tax and B a low tax, and in the other case the two are 
interchanged. Of course, as noted, a uniform tax structure also provides an extremum for our 
problem. This illustrates a general result, obtained by Chenault (1985): the number of critical 
points for a well-behaved non-linear programming problem must be odd. Incidentally, uniform 
taxation can be expenditure minimizing only if the revenue constraint (12) is written in equality 
form. Obviously the expenditure maximization problem is not well set if we impose a minimum 
revenue constraint. 
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utility sufficiently exceeds the loss in utility to the other household. Other 
social welfare functions, with different degrees of inequality aversion, i.e. with 
different equity implications, would evaluate randomized tax structures 
differently. In the limit, for example, Rawlsian maximin would prohibit any 
departure from uniform taxation. 

Both approaches to the random taxation problem - an expenditure- 
minimizing approach exploiting the feasibility of lump-sum transfers, and a 
utilitarian or other social function-maximizing approach, in which such 
transfers are ruled out - would appear to be of some value. Moreover, one 
would expect the results in each case to bear a certain resemblance to each 
other, if not to be identical in detail. Indeed, our characterization of 
necessary and sufficient conditions for local randomization is certainly 
consistent with Stiglitz’s informal excess burden presentation of the problem. 
Our results differ from those in Stiglitz’s formal analysis, however. 

Some of these differences are quite minor. Stiglitz’s results, for example, are 
stated in terms of ordinary demand elasticities rather than compensated elasti- 
cities, as ours are. Given the different (expenditure-minimization) approach 
that we take, however, this difference is not surprising. A second difference 
is that while risk aversion appears in the Stiglitz formulae, no cardinal 
properties of the utility function are required for our analysis. But since we 
hold utility fixed throughout our discussion, whereas cardinality intrinsically 
involves comparison of different utility levels, this feature of our analysis is 
also understandable. 

What is more striking is the fact that we lind that convexity of the (compen- 
sated) revenue function R(p, U), i.e. RPP> 0, is sufficient for randomization. 
Moreover, while randomization can sometimes be optimal when R is concave, 
it is definitely not optimal near a (local) maximum of R. By contrast, 
Stiglitz derives a sufficient condition for randomization in the neighborhood 
of a tax rate at which, it is claimed, tax revenue is maximized. This would 
imply that the uncompensated revenue functioni 

R*(P) = (P - l)c*(p, 01, (18) 

where C*(p,O) = C*(p,I),=, is the ordinary demand function, is concave, and 
in fact would be strictly concave (R& ~0) at a regular local maximum. This 
conclusion is all the more puzzling given that Stiglitz’s sufficient condition 
[his (14)] requires that v*, the curvature of the ordinary demand function, 
must be sufficiently negative, i.e. the ordinary demand curve must be 
sufficiently convex. At least for the compensated case, we saw above that v 
sufficiently negative implies that R,, > 0. 

“We will henceforth use an asterisk to identify parameters characterizing ordinary (uncom- 
pensated) demand or revenue functions. 
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A simple calculation, however, shows that Stiglitz’s (14), i.e. 2 + r*v* ~0, 
actually implies Rz,,>O, as our analysis of the compensated case would lead 
one to expect. This ‘sufficient convexity’ of the demand curve thus con- 
tradicts the assumption that revenue is at a maximum (R&co). Hence, 
Stiglitz’s formal analysis does not verify the claimed optimality of randomiza- 
tion around a point of maximum tax revenue, such as the tax rate 7* in fig. 3, 
and thus does not contradict our conclusions.13 Indeed, strictly speaking, 
Stiglitz’s analysis only applies to situations where tax revenue is at a local 
minimum, as for example at tax rate 7’ in fig. 3. We note, however, that a 
uniform tax structure yielding a local minimum of tax revenue cannot be 
welfare-maximizing. Thus, under a correct interpretation, Stiglitz’s argument, 
strictly speaking, only shows that randomization is desirable when the 
uniform tax is not a welfare-maximizing uniform tax. 

The conclusion that local randomization is undesirable around a maxi- 
mum revenue point is thus valid not only for expenditure-minimization 
problems such as we considered in section 3, but also for a utilitarian social 
welfare maximization problem with no lump sum transfers. Indeed, this 
finding is not unique to utilitarian social welfare functions: it holds for all 
social welfare functions, even ones that are less inequality-averse than the 
utilitarian (i.e. even for inequality-preferring social welfare functions). Because 
of its similarity to our analysis in section 2, we only sketch the proof of this 
assertion. First, note that the necessary and sufficient condition for local 
randomization requires that the social indifference contour in price space be 
less concave (more convex) than the iso-revenue contour around pA = pB. The 
curvature of the latter, however, is -2RzJRz. [This is equivalent to Stiglitz’s 
(lo), and directly parallels (6) above.] Near the maximum tax revenue, 
Rz NO, Rzp ~0, and hence this iso-revenue contour becomes L-shaped. No 
indirect social indifference contour can be more convex than this. 

‘%tiglitz (pp. 9-10) presents an example in which it appears that it is optimal to randomize 
taxes when the tax revenue requirement is sufficiently high, but not when it is low. For 
interested readers, we have two comments on this example. 

First, and most importantly for our purposes, the example uses the properties of the 
utilitarian social welfare function in a specific way. In particular, the degree of concavity of the 
utility function plays a fundamental role in the example, which is based on Stiglitz’s (13). By 
contrast, our results obtain for any social welfare function, no matter how inequality averse, and 
hinge on the properties of the revenue function. 

Second, and more specifically, Stiglitz assumes an indirect utility function that generates a 
demand function C =~?p-jL”, where k>O, p and y are parameters. This is derived from an 
underlying utility maximization problem with pC = z - L as a budget constraint, where LL 0 is 
leisure. Thus, pC cannot exceed L. For randomization to be optimal in this example, Scglitz 
requires (among other restrictions) B< 1 and p ‘sufliciently large’. It is clear, however, that fi< 1 
and pCs;L require that psp, where p’~@=k-‘L’-4 That is, these particular indirect utility and 
demand functions are really only meaningfully defined for values of p ‘sulliciently small’. Perhaps 
further restrictions on parameter values are required for this example to work. 
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i’ i 7* 7 

Fig. 3 

6. Conclusion 

In conclusion, we return to a comparison of our expenditure-minimization 
analysis with a social welfare maximization approach. As noted in section 2, 
we have found necessary and sufficient conditions for randomization of the 
tax structure to be Pareto improving, if accompanied by lump-sum interper- 
sonal transfers. Even the most inequality-averse social welfare functions, such 
as Rawlsian maximin, would approve a move away from an equal tax rate, 
equal utility situation under the conditions we have derived. (Equivalently, 
randomization would raise ex ante utility for consumers under these con- 
ditions, no matter how risk averse they might be.) Obviously, allowing for a 
willingness to trade off one household’s utility against another’s through the 
use of less inequality-averse social welfare functions (such as the utilitarian 
one) would expand the range of parameter values under which randomiza- 
tion of the tax structure (accompanied by appropriate lump-sum transfers) 
would be desirable. In this sense, we have described a very stringent set of 
conditions for randomization - ones which do not involve any interpersonal 
tradeoffs, and which therefore can be stated entirely without reference to any 
cardinal welfare magnitudes, such as marginal social utilities of income. It 
would be interesting to explore further the possibilities for randomization 
under weaker conditions. 

The possibility of lump-sum transfers plays a critical role in our analysis. 
For example, Pareto-improving differentiation of the tax structure generally 
requires such transfers since they permit compensation from low- to high-tax 
households who would otherwise necessarily be made worse off (ex post). In 
this respect, we depart significantly from the Stiglitz analysis, which disallows 
interpersonal transfers. The similarity in the nature of the results that we 
obtain given this structural difference in the two approaches is rather 
surprising. This, too, deserves further exploration. 
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